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Abstract: Learning mathematics has been considered as a great challenge for many students. The
advancement of computer technologies, in particular, artificial intelligence (AI), provides an opportu-
nity to cope with this problem by diagnosing individual students’ learning problems and providing
personalized supports to maximize their learning performances in mathematics courses. However,
there is a lack of reviews from diverse perspectives to help researchers, especially novices, gain a
whole picture of the research of AI in mathematics education. To this end, this research aims to
conduct a bibliometric mapping analysis and systematic review to explore the role and research
trends of AI in mathematics education by searching for the relevant articles published in the quality
journals indexed by the Social Sciences Citation Index (SSCI) from the Web of Science (WOS) database.
Moreover, by referring to the technology-based learning model, several dimensions of AI in mathe-
matics education research, such as the application domains, participants, research methods, adopted
technologies, research issues and the roles of AI as well as the citation and co-citation relationships,
are taken into account. Accordingly, the advancements of AI in mathematics education research are
reported, and potential research topics for future research are recommended.

Keywords: artificial intelligence; mathematics education; bibliometric mapping analysis; system-
atic review

1. Introduction

Mathematics refers to the learning content which employs symbolic language to
represent such concepts as number, quantity, space and structure [1]. Mathematics ed-
ucation has been identified as a complex and challenging task aiming to foster learners’
problem-solving competence [2]. Several previous studies have reported that students
generally feel that it is difficult to complete mathematics tasks, in particular, those which
need to be resolved with multiple steps [3,4]. Therefore, researchers have made attempts to
develop various learning strategies and tools to enhance students’ mathematics learning
outcomes [1]. They have also pointed out the importance of identifying the factors affecting
students’ mathematics learning performance, such as insufficient prior knowledge and
lack of personalized supports for individual students [5,6].

In the meantime, the advancement of artificial intelligence (AI) has provided a means
to deal with these problems [7]. AI refers to the field of computer science research aimed
at developing computer systems that are capable of performing tasks requiring human
intelligence, such as visual and voice recognition, inferencing and decision making [8].
Several previous applications have revealed the potential of applying AI in education,
especially for helping students face complex or challenging tasks [9,10]. For example, Chen
and Liu [11] developed a personalized computer-assisted mathematics problem-solving
system and found it effective for improving students’ learning performance and attitude.

Researchers have identified several roles of AI in education, such as an intelligent tutor,
tutee, learning tool and partner as well as advisor for making educational policies [12]. As
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for the role of intelligent tutor, the use of AI technologies to simulate teachers’ intelligence
for providing personalized guidance, feedback or supports to individual students during
the learning process has been demonstrated by several researchers. For example, Hwang
et al. [13] developed an adaptive learning system for mathematics courses by taking into
account individual students’ cognitive and affective performances.

In order to examine the roles and research trends of AI in mathematics educa-
tion (AIME), the present study conducted bibliometric mapping analysis and a sys-
tematic review to analyze the studies published in the WOS database following the
technology-based learning model proposed by Lin and Hwang [14] to answer the fol-
lowing research questions:

1. What and who are the major journals publishing the AIME studies? What are the
most cited papers of AIME research? Who are the most productive and cited authors
of AIME research?

2. What are the most used keywords of AIME research? What are the relationships
between the keywords?

3. What are the application domains of AIME research?
4. What are the sample groups selected for AIME research?
5. What are the research methods adopted in AIME research?
6. What are the roles of AI in mathematics education?
7. What are the adopted AI algorithms in AIME research?
8. What are the research issues investigated in AIME research?

2. Literature Review

The advancement of various information, communication and computing technologies
has provided new opportunities for improving teaching and learning; in particular, the
rapid advance of AI enables computer systems to act more like a tutor than conventional
tutoring systems [7]. AI technologies can be used to analyze students’ learning process,
including interaction content, learning behaviors, test results and learning perceptions, to
provide instant support or feedback to individual students as well as suggestions to teachers
for improving teaching content and strategies [15]. Scholars [11,12,15] have indicated that
facilitating personalized learning is among the key objectives of Artificial Intelligence in
Education (AIED). Zawacki-Richter et al. [16] reviewed the AIED in higher education
studies published from 2007 to 2018 and concluded that AI has been applied to various
application domains, in particular, computer science, science, technology, engineering
and mathematics.

Researchers have also indicated that, in the 21st century, in addition to delivering
knowledge, it is important to foster students’ higher order thinking, such as questioning,
critical-thinking, problem-solving and creative-thinking abilities; mathematics is the foun-
dation of these abilities [17]. Several previous studies have emphasized that in mathematics
education, it is important to support students to learn to think critically, communicate
with others, solve problems and construct knowledge, while also delivering mathematics
concepts and methods to them [18,19]. Several scholars [7,16,20] have further pointed out
that the use of AI technologies to analyze students’ learning status or behaviors makes it
possible to develop intelligent tutors, which are able to provide effective interventions to
individual students to improve their learning performances and motivation. For exam-
ple, one of the studies [21] employed the genetic algorithm to implement a personalized
e-learning system to provide personalized curriculum sequencing recommendations to
individual learners to promote their learning performances.

Furthermore, the incorporation of AI technologies into educational settings enables
computer-based learning systems to play roles of intelligent tutors, tools or tutees as
well as policy-making facilitators [12,20]. For example, some previous studies employed
AI technologies to simulate the behaviors of teachers in diagnosing students’ learning
problems and providing personalized learning content and paths as well as suggestions or
guidance to individual students in mathematics courses [22–24]. A recent review study
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regarding technology-enhanced adaptive/personalized learning [25] reported that the
advancement and popularity of AI has gradually accomplished an important objective
of technology-enhanced learning, that is, providing personalized or adaptive learning
environments to improve students’ learning achievements. For example, some studies have
reported that the provision of context personalization in intelligent tutoring systems (ITS)
can promote learners’ situational interest and performance in math tasks [26,27]. Another
example is the use of AI technologies (e.g., unsupervised machine learning method) in
developing student models for predicting individual students’ learning engagement or
status in mathematics courses [28].

From the literature, it was found that AI is becoming increasingly influential in
mathematics education. Scholars have indicated that, via analyzing the publications in a
specific domain, valuable information regarding the trends or potential research issues can
be provided to researchers in the field [12,16,25]. In the past three decades, researchers have
mainly paid attention to the trends and issues of AIED [7,12], AI in e-learning [29], AI in
higher education [16], AI in medical education [30] and AI in engineering applications [31].
Scholars have pointed out that mathematics education is very important in the 21st century
since it is highly related to the development of students’ problem-solving competence and
cross-curricular experiences [32–34]. Gallagher et al. [32] conducted a literature review
on the issue of adaptive teaching in mathematics from 1975 to 2014, and pointed out
that technology could assist students in the process of learning mathematics knowledge
and skills, and could cultivate their creativity. However, there has not yet been a review
for AIME.

To cope with this problem, this research aims to use bibliometric mapping analysis
to analyze AIME research, including the most frequently adopted keywords, the most
contributing journals, papers and authors. We further conduct a systematic review and
discuss the dimensions of application domains, sample groups, research methods, roles of AI,
AI algorithms and research issues based on the technology-based learning model [14,35,36].

3. Method
3.1. The Article Selection Process

On 31 December 2020, we searched the publications in the “education/educational
research” category from the WOS database using two substrings of keywords: “AI” (“arti-
ficial intelligence” or “machine intelligence” or “intelligent support” or “intelligent virtual
reality” or “chat bot*” or “machine learning” or “automated tutor*” or “personal tutor*”
or “intelligent agent*” or “expert system*” or “neural network*” or “natural language
processing” or “chatbot*” or “intelligent system” or “intelligent tutor*”) [16] and “mathe-
matics education” (“mathematics” or “math” or “statistics” or “calculus” or “algebra”) [19].
A total of 136 articles were obtained. By excluding non-article types, 129 articles were
retained. Following that, a manual review was conducted to examine the content of each
article (including paper title and abstract) to eliminate repeated, non-English, literature
review and irrelevant publications to ensure that the selected articles involved the use of
AI in practical mathematics learning activities. Finally, 43 articles were retained for content
and bibliometric mapping analysis (see Figure 1).

3.2. Data Coding and Analysis

The first three research questions were answered by employing the bibliometric
mapping analysis. The VOSviewer software was adopted to analyze the citation, co-citation
and the most used author keywords in the articles.
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Figure 1. Article selection process for bibliometric mapping analysis and systematic review.

To answer the other research questions, a systematic review was conducted by refer-
ring to the theoretical model and coding scheme of Hsu et al. [35], Lin and Hwang [14]
and Tu and Hwang [36]. As shown in Figure 2, several dimensions (i.e., application do-
mains, sample groups, research methods, roles of AI, AI algorithms and research issues);
journals; most-cited papers and authors; and most used keywords were taken into account.
Accordingly, the coding scheme for each dimension is listed as follows:

1. Application domains: by referring to Yang et al. [19], the application domains in
mathematics education were categorized into general/ mathematics foundations, dis-
crete mathematics /algebra, analysis, geometry/ topology and applied mathematics,
others, non- specified and mixed.

2. Research sample groups: by referring to Hsu et al. [35], the research sample groups in
the literature were categorized into elementary school students, junior high school
students, higher education students, teachers, mixed groups and non-specified.

3. Research methods: by referring to the coding scheme of Hsu et al. [35], the research
methods were divided into quantitative, qualitative and mixed methods.

4. Roles of AI: as suggested by Zawacki-Richter et al. [16], the roles of AI in education
include profiling and prediction, ITS, assessment and evaluation and adaptive systems
and personalization.

5. Adopted AI algorithms: by referring to the study of Hwang et al. [12], AI algo-
rithms were categorized into evolutionary algorithms, Bayesian inferencing and
networks, search and optimization, fuzzy set theory, deep learning, case-based reason-
ing, traditional machine learning approaches and knowledge elicitation methods via
interviewing domain experts and mixed. Traditional machine learning approaches
include statistical learning; data mining; or symbolic learning approaches, such as
Item Response Theory (IRT), linear regression, polynomial regression, classification,
clustering, Iterative Dichotomiser 3 (ID3), version space, support vector machines
and neural networks.

6. Research issues: by referring to Tu and Hwang [36], research issues were classified
into cognitive, affect, skills, learning behaviors, correlation, relevance, system design
or evaluating AI system/tool performance, meta-cognition and learning styles.
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Figure 2. Model for reviewing artificial intelligence (AI) in mathematics education (AIME) research.

The coding was performed by two experienced researchers who read and categorized
the AIME articles based on the coding scheme. The kappa value of the two researchers’
coding results was 0.85, showing a high consistency [37].

3.3. Data Coding and Analysis

Figure 3 illustrates the number of AIME publications in each year from 1996 to 2020.
Based on the suggestions of several previous studies to take into account the fluctuation
of technology [16,36,38], the AIME studies are categorized into three time periods, that is,
1996–2010, 2011–2015 and 2016–2020. Accordingly, there are six publications from 1996 to
2010, 12 from 2011 to 2015 and 25 published papers from 2016 to 2020, as shown in Figure 3.
It was found that the number of publications in the latter two periods was nearly twice
that of the previous time period, showing the rapid growth of AIME research in the past
decade. This finding could be related to the advancement of computer and AI technologies
in the past 10 years.
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4. Results
4.1. Main Journals, Most Cited Papers and Most Productive and Cited Authors

Figure 4 shows nine journals with the largest number of articles in AIME research
between 1996 and 2020. They were Computers & Education (publications = 8), Journal of Educa-
tional Psychology (publications = 5), Journal of Computer Assisted Learning (publications = 3),
IEEE Transactions on Learning Technologies (publications = 3), Educational Technology Research
and Development (publications = 2), Educational Technology & Society (publications = 2), In-
teractive Learning Environments (publications = 2), Educational Sciences: Theory & Practice
(publications = 2) and Journal of Educational Computing Research (publications = 2). It also
shows that the most cited journals are Educational Technology & Society (citations = 155),
Journal of Educational Psychology (citations = 127) and Computers & Education (citations = 98).
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In addition, co-citation analysis and cited sources were selected. The minimum num-
ber of citations from sources was adjusted to 10, and the number of sources to be selected
was automatically displayed as 30. Figure 5 shows that the top three most cited journals are
Journal of Educational Psychology (79 co-citations), Computers & Education (72 co-citations)
and Learning and Instruction (34 co-citations).

Table 1 shows the top three most-cited papers, which were published by Educational
Technology Research and Development, Journal of Educational Psychology and Innovations in
Education and Teaching International, respectively. This more or less indicates that the journals
have taken the studies of AI and mathematics education as important research foci.

Table 1. Top 3 most-cited papers.

Rank Title Journal Authors, Year Total # of Citations

1
Are badges useful in education?: it

depends upon the type of badge and
expertise of learner

Educational Technology
Research and
Development

Abramovich, Schunn
and Higashi, 2013 154

2

Using Adaptive Learning Technologies to
Personalize Instruction to Student

Interests: The Impact of Relevant Contexts
on Performance and Learning Outcomes

Journal of
Educational Psychology Walkington, 2013 65

3 Diagnosing student learning problems
based on historical assessment records

Innovations in
Education and

Teaching International

Hwang, Tseng and
Hwang, 2008 39
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The first study by Abramovich et al. [39] investigated the effects of using different
badges on students’ learning motivation with ITS in mathematics courses, showing the
potential of incorporating gamification or award (i.e., badges) strategies into AI-based
systems. The second study by Walkington [40] suggested that the use of adaptive tech-
nologies to provide personalized instructions had good potential to promote students’
learning interest, and hence improve their learning performances. The third by Hwang
et al. [41] reported the effectiveness of using AI technologies to diagnose students’ learn-
ing problems and provide personalized learning suggestions to individual students in a
mathematics course.

Table 2 shows the authors who have published two or more AIME studies. The
top three authors with the highest number of citations were Xiangen Hu (citations = 49,
publications = 3), Gwo-Jen Hwang (citations = 48, publications = 2) and Scotty D. Craig
(citations = 40, publications = 2).

Table 2. Top authors ranked by number of publications.

Author Countries/Areas Publications Total # of Citations
(Citations Per Paper)

Xiangen Hu USA 3 49 (16.33)
Candace Walkington USA 3 33 (11)

Gwo-Jen Hwang Taiwan 2 48 (24)
Scotty D. Craig USA 2 40 (20)
Vincent Aleven USA 2 22 (11)

Figure 6 shows the co-citation analysis results by setting the minimum number of
citations as 10. It was found that the publications by Koedinger (30 citations), Graesser
(23 citations) and Walkington (22 citations) have been co-cited the most in AIME research.
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4.2. Most Used Keywords

A total of 163 author keywords are included in the 43 AIME articles. Figure 7 shows
the cluster analysis results generated by VOSviewer, including the dynamic change and
network map. The most frequently used keywords are “intelligent tutoring system” (f = 14),
“mathematics education” (f = 5), “personalization” (f = 4), “algebra” (f = 3), “feedback”
(f = 3), “human-computer interface” (f = 3), “intelligent tutors” (f = 3), “interactive learning
environments” (f = 3) and “learning diagnosis” (f = 3).

In addition to mathematics education, Figure 7A shows that the popular author
keywords in recent studies are personalization, feedback, human-computer interface and
so on. This implies that the main focus of AIME research is to provide personalized learning
support or guidance in learner-centered contexts.

Figure 7B shows three main clusters of AIME research, that is, “AI-based learning sys-
tems”, “personalized/adaptive learning” and “learning strategies/models”, as displayed
in red, green and blue. The studies in Cluster 1 (i.e., AI-based learning systems) focus on
the development and applications of AI technologies and ITS to improve students’ learning
performances. Among the three clusters, Cluster 1 includes the earliest AIME research. For
example, Bennett and Sebrechts [42] evaluated the accuracy of the automatic qualitative
judgments generated by an expert system in diagnosing students’ problems when learning
algebra. Cluster 2 focuses on providing personalized/adaptive learning environments
using AI technologies. For example, Wang et al. [43] demonstrated an adaptive learning
system which can provide personalized learning content based on individual students’
learning statuses to increase their learning gains. Cluster 3 focuses on incorporating various
learning strategies into AI-supported learning environments to improve students’ learning
outcomes in mathematics courses. For example, Jiménez-Hernández et al. [44] proposed a
gamification approach in an AIME learning environment to enhance the students’ learning
motivation and achievement.

In addition to the three clusters, it is worth noting another research focus, that is,
educational data mining (EDM), such as clustering, classification, Bayesian modeling,
relationship mining and discovery with models. EDM can be used to help policy makers
or administrators in educational institutes determine important policies for mathematics
education [45]. It can also be used to analyze students’ class attendance, learning status
and homework submission materials to predict the potential drop-out risk of individual
students [7] and the factors affecting students’ mathematics literacy [46].
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4.3. Application Domains

Figure 8 shows the number of application domains in individual time periods. It
was found that the most frequent applications of AIME are discrete mathematics/algebra
(53.49%), followed by general/foundations (16.28%) and mixed (9.30%). Moreover, the
number of individual applications generally increased, and the application domains be-
came more diverse from the first to the third time periods.
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4.4. Sample Groups

Figure 9 shows the sample groups adopted by the AIME studies. It was found that
junior high school students were the most frequently adopted samples (32.56%), followed
by elementary school students (27.91%) and higher education students (23.26%). It was also
found that no senior high school students were adopted in those AIME studies; moreover,
two studies adopted teachers as sample groups in the third time period.
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4.5. Research Methods

Figure 10 shows the research methods adopted by the AIME studies. Quantitative
methods were adopted the most (79.07%), followed by mixed methods (18.60%) and
qualitative methods (2.33%) in each time period.
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4.6. Roles of AI

Figure 11 shows the roles of AI in the AIME research. The most frequent role played
by AI is “intelligent tutoring systems” (45.24%), followed by “profiling and prediction”
(28.57%) and “adaptive systems and personalization” (21.43%). Generally speaking, for
each role of AI, the number of studies increased from the first to the third time periods,
except for the role of “assessment and evaluation.”
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Figure 12 shows the relationships among sample groups, roles of AI and the edu-
cational supports provided by AI. For example, it was found that the main educational
supports provided by “intelligent tutoring systems (ITS)” were “student models and aca-
demic achievement” (25.58%), followed by “diagnosing strengths and automated feedback”
(18.60%) and “teacher’s perspective (i.e., reducing teachers’ loadings” (18.60%); moreover,
these ITS studies focused on diagnosing the mathematics learning problems of elementary
school and junior high school students, and providing feedback to them so as to reduce the
teachers’ loadings (e.g., [47–49]). On the other hand, it was found that the issues related
to curating learning materials for individual students and facilitating collaboration were
seldom investigated in ITS studies.
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In the studies in which the role of AI was “profiling and prediction”, the sample groups
were mainly junior high school students and mixed groups, and the supports from AI were
mainly finding student models for improving students’ academic achievement [50–52]).

As for the role “adaptive systems and personalization”, the relevant studies were
published in 2016–2020 to provide personalized guidance or supports to almost all levels
of students (i.e., elementary school, junior high school and higher education) via analyzing
their learning status and behaviors (e.g., [43,53–55]). It was also found that these “adaptive
systems and personalization” studies seldom refer to the diagnosis of students’ learning
problems for providing proactive personal guidance.

The role of “assessment and evaluation” was applied to the studies for higher edu-
cation in the earlier stage and was used in the studies for elementary school students in
recent years for automated grading [42] and feedback [28]. In the studies related to this
role of AI, the issues related to the evaluation of student understanding, engagement and
academic integrity as well as the evaluation of teaching were rarely included.
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4.7. Adopted AI Algorithms

Figure 13 shows the adopted AI algorithms. It was found that most studies adopted
the traditional machine learning approach (79.07%), followed by knowledge elicitation
methods via interviewing domain experts (6.98%), mixed (6.98%) and deep learning (4.65%),
while evolutionary algorithms, search and optimization, fuzzy set theory and case-based
reasoning were not adopted in the studies.
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Those studies which adopted traditional machine learning approaches were related to
the development and application of ITS (e.g., [39,47,48]). The use of knowledge elicitation
methods via interviewing domain experts was also related to the development of intelligent
learning systems for assessing students’ learning status and providing feedback to them
(e.g., [40,41]). Deep learning or other algorithms were generally used for building models
for predicting students’ learning behaviors or performances (e.g., [45,51]).

4.8. Research Issues

Figure 14 shows the number of different research issues investigated in the AIME
research. It should be noted that generally two or more research issues were investigated in
each study. The analysis results show that the issues related to cognition were investigated
the most (34 articles), followed by learning behaviors (22 articles) and affect (21 articles).
It was also found that the research issues became more diverse from the first time period
to the third. For example, in the third time period, the issues related to skill (e.g., [56]),
meta-cognition (e.g., [57]) and learning styles (e.g., [54]) were included.

Figure 15 further shows the cognition and affect issues investigated in the AIME
research. In terms of cognition, most studies measured students’ learning performances
(33 articles), while few considered students’ higher order skills (2 articles) or collaboration
or communication (1 article). Moreover, none of the studies investigated students’ cognitive
load. In terms of affect, most studies investigated the students’ attitude or motivation
(16 articles), followed by learning perceptions (9 articles), self-efficacy (5 articles) and
satisfaction (4 articles).
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In the cognition dimension, early studies mainly focused on measuring students’
learning performance. In the third time period, several studies started to investigate stu-
dents’ higher order thinking as well their collaboration and communication competences.
For example, one study aimed to use ITS to facilitate students’ construction of mathemat-
ical ideas to help them understand the reasoning behind mathematics to improve their
mathematics problem solving [58]. On the other hand, it was found that cognitive load
was not discussed in those AIME studies.

In the affect dimension, learning attitudes and motivations were the most frequently
investigated issues in the early studies. Moreover, in recent years, the investigated issues
have become more diverse; for example, Güre et al. [46] used educational data mining to
analyze the data of the Programme for International Student Assessment (PISA) 2015 in
Turkey and found that more family supports could reduce students’ mathematics anxiety.
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5. Discussion

This study analyzed 43 articles of AIME published between 1996 and 2020 in the
WOS database. Several studies have demonstrated that the use of AI technology has great
potential for promoting students’ learning performances and higher order thinking [59].
In addition, using AI technology to diagnose students’ learning problems can not only
provide instant feedback to individual students but can also provide information to help
teachers improve the learning design [7,60,61]. From the analysis results, the following
findings and implications were derived:

• The greatest amount of AIME research was published in Computers & Education,
followed by the Journal of Educational Psychology and the Journal of Computer Assisted
Learning. In addition, the top three most cited journals (co-citation analysis) are the
Journal of Educational Psychology, Computers & Education and Learning and Instruction.
That is, more education and educational technology researchers have engaged in
AIME research than mathematics education researchers. This implies the need to
encourage mathematics education researchers to consider using AI technology in
their studies.

• From the results of using cluster analysis on author keywords, three clusters of AIME
studies were found; that is, “AI-based learning systems”, “personalized/adaptive
learning” and “learning strategies/models.” Moreover, a new and small cluster, EDM
in mathematics education, was formed in recent years. This could be a good reference
for those intending to conduct AIME research in the future.

• The most frequently adopted application for AIME studies was discrete mathemat-
ics/algebra, followed by general/foundations. On the other hand, geometry and
topology, applied mathematics, mathematics literacy and across-disciplines (e.g.,
STEM) were seldom included in those AIME studies. This implies that AIME applica-
tions remain in the beginning stage; that is, researchers mainly focused on using AI
technologies to solve fundamental problems in mathematics courses.

• The most frequently adopted sample group for AIME studies was junior high school
students, followed by elementary school students and higher education students. On
the other hand, teachers and senior high school students were seldom adopted by
AIME research. This could be due to the fact that learning mathematics in junior high
school is more challenging than in elementary school. Therefore, junior high school
students need more assistance to face the challenge. Moreover, choosing elementary
school students and higher education students could be due to convenience. Elemen-
tary school teachers generally tend to accept new learning approaches, since they
need not worry about students’ entrance examinations, in particular, in Asian coun-
tries. Choosing higher education as the sample groups is also a convenient selection,
since most of the authors were researchers in universities. Similarly, most studies
focused on students’ learning performance, since it is the main objective for all levels
of mathematics education.

• Quantitative methods were the most frequently adopted approaches, followed by
mixed methods. This is reasonable, since most studies aimed to evaluate students’
learning performance via analyzing their test scores as well as learning attitudes or
attitudes via questionnaires.

• The most frequent role played by AI in mathematics education was “intelligent tu-
toring systems”, followed by “profiling and prediction” and “adaptive systems and
personalization.” This is consistent with the finding regarding the research issue, that
is, evaluating students’ learning performance is the main focus of AIME studies. The
main purpose of developing ITS is to evaluate students’ learning problems and to
provide instant supports to them, which aims to improve their learning performances.
Although adaptive learning systems and personalization have the same aim, devel-
oping such adaptive learning systems is more challenging, and hence the number of
such studies is relatively small.
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• Most studies adopted the traditional machine learning approach, or knowledge elici-
tation methods via interviewing domain experts, while modern AI approaches, such
as deep learning, were seldom adopted. This could be due to the fact that those AIME
studies mainly focus on the development of ITS for evaluating individual students’
learning statuses to provide assistance to them. This objective is highly related to
features of traditional machine learning approaches (e.g., statistical learning, data min-
ing and decision trees) and knowledge elicitation methods via interviewing domain
experts; that is, domain knowledge is explicitly represented and used for decision
making or prediction [7,12].

• Most AIME studies investigated students’ learning achievements (cognition dimen-
sion), and learning motivation and attitude (affect dimension). This is because the
objective of mathematics education is to foster students’ cognition competences. More-
over, since mathematics courses are generally considered by students as being chal-
lenging, investigating students’ learning motivation or attitude is hence an important
research focus. It is also reasonable that “skill” was seldom discussed, since it is less
relevant to the objectives of mathematics education.

6. Conclusions

In sum, it was found that the advancement of AI and computer technologies has en-
couraged researchers to conduct diverse AIME studies [7,39–41,59]. Based on the findings
and the above discussion, some suggestions for AIME research are given as follows:

• It is suggested that researchers consider using AI applications to provide students
with personalized guidance or support, and to investigate the impacts of AI-based
learning approaches in mathematics education research.

• It would be innovative to use EDM to investigate the factors affecting students’ learn-
ing outcomes and to find associations between students’ learning behaviors and
performances.

• It could be valuable to adopt relevant AI applications in learning activities of ad-
vanced mathematics programs, such as geometry and topology, applied mathematics,
mathematics literacy and cross-disciplinary (e.g., STEM) courses.

• It is important to consider how AI applications benefit those seldom-adopted sample
groups in mathematics education, such as teachers and senior high school students.

• In addition to quantitative analysis, it is important to encourage researchers to con-
duct qualitative methods to collect learners’ feedback on AI-supported mathematics
learning and to analyze learners’ perceptions in depth.

• It would be valuable to develop adaptive mathematics learning environments via
the collaboration of mathematics education, educational technologies and computer
science researchers.

• It could be interesting to employ modern AI technologies, such as deep learning,
in mathematics education. Although the related AI applications, such as image
recognition and voice recognition, might be directly relevant to mathematics content,
they can benefit learners from other perspectives, such as providing visually impaired
students with a supportive interface.

• It is important to investigate the effectiveness of using AI in mathematics learning
activities from different perspectives by taking rarely considered research foci into
account, such as cognitive load, collaboration and communication competences and
learning anxiety.
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